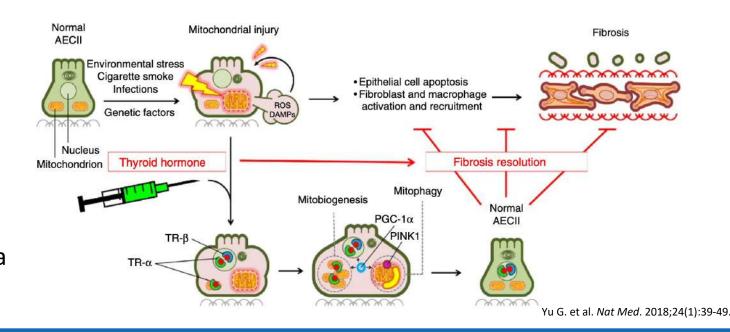


New inhalation drug delivery systems for the treatment of pulmonary fibrosis

Bazzoli Gianluca, Annalisa Bianchera, Ruggero Bettini gianluca.bazzoli@unipr.it

EUFEPS annual meeting, 31 May– 2 June 2023, Lisbon

Project AIM

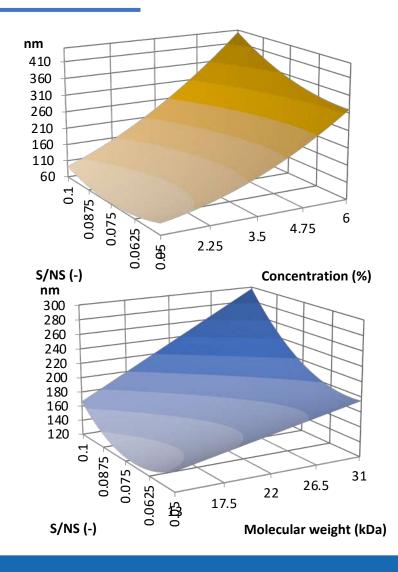


The aim of this project is the development of a novel treatment for the **lung fibrosis** based on a **levothyroxine** dry powder for inhalation.

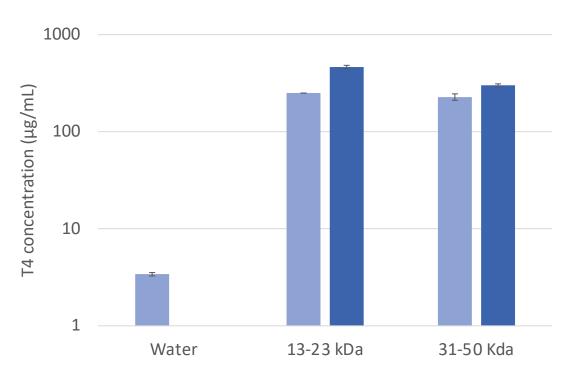
medicine

Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function

Guoying Yu^{1,11}, Argyris Tzouvelekis^{1,2,11}, Rong Wang^{1,10}, Jose D Herazo-Maya¹, Gabriel H Ibarra¹, Anup Srivastava¹, Joao Pedro Werneck de Castro^{3,4}, Giuseppe DeIuliis¹, Farida Ahangari¹, Tony Woolard¹, Nachelle Aurelien¹, Rafael Arrojo e Drigo⁵, Ye Gan¹, Morven Graham⁶, Xinran Liu⁶, Robert J Homer^{7,8}, Thomas S Scanlan⁹, Praveen Mannam¹, Patty J Lee¹, Erica L Herzog¹, Antonio C Bianco³ & Naftali Kaminski¹



PVA nanoparticles Production


	-1	0	1
Molecular weigth (kDa)	13-28	-	31-50
Polymer concentration (%)	1	3.5	6
Solvent : antisolvent	1:10	1:15	1:20

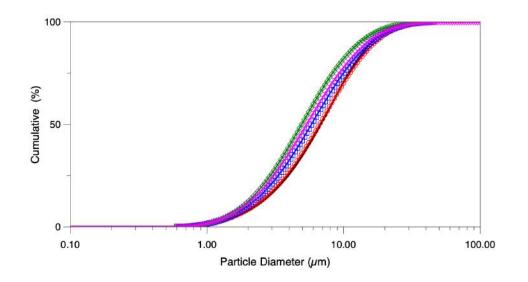
T4 apparent solubility

PVA Molecular weight (kDa)	PVA concentration (%)	Sample	T4 (% w/w)
13 - 23	1	S 1	0.99
		S2	1.48
		S 3	1.96
		S4	2.91
		S5	3.38

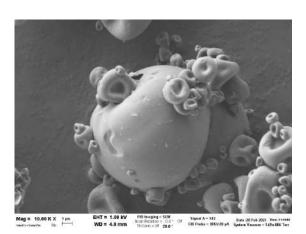
Light blue: 1% w/v of PVA in water. Blue: 3.5% w/v of PVA in water.

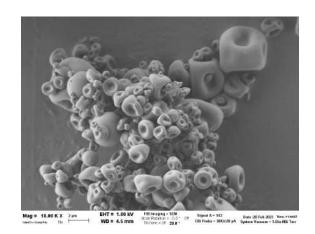
PVA-T4 powders

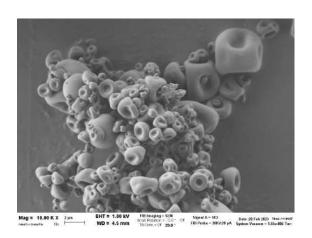
Sample	Size (nm)	PDI
S1	648.3	0.48
S2	636.3	0.48
S3	674.4	0.41
S4	917.3	0.65
S 5	602.4	0.41


High pressure Homogenization

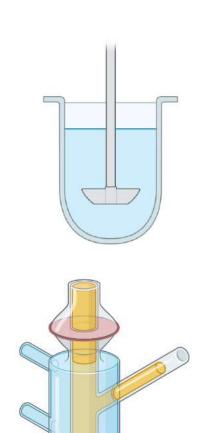
Sample	Size (nm)	PDI
S1	422.7	0.29
S2	429.8	0.30
S3	436.3	0.25
S4	481.7	0.33
S5	436.4	0.35

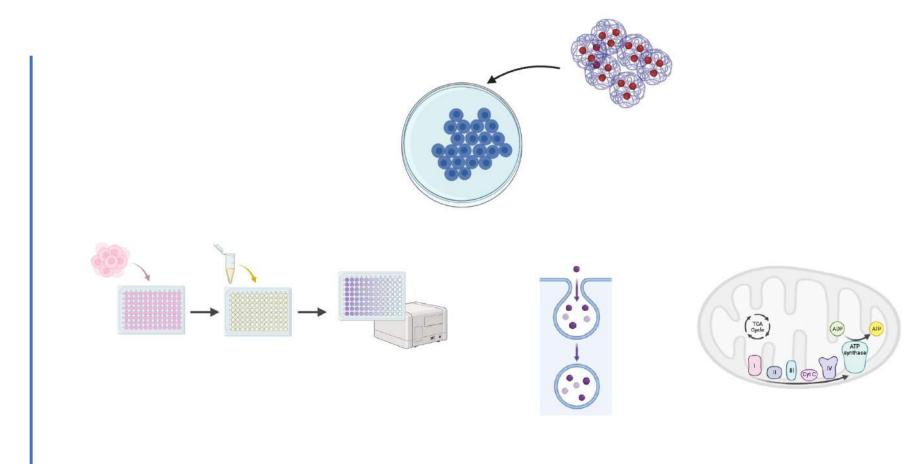





Powders characterization

Sample	Emitted Dose (%)	Fine Particle Fraction (%)
S1	95.37	39.34
S2	97.05	51.94
S3	92.78	45.14
S4	94.41	41.87
S5	97.23	38.27




Conclusions

- PVA nanoparticles with a size and PDI suitable for intracellular delivery were obtained
- interaction between T4 and PVA exploited to obtain highly loaded nanoparticles
- Inhalable free flowing powders based on PVA-T4 were produced.
- The presence of aggregate clould explain the high emitted dose and the low fine particle fraction

Ongoing activities

Thank you for your attention