

Design of novel melatonin receptor ligands with neuroprotective activity

Laura Scalvini,¹ Federica Vacondio,¹ Alessio Lodola,¹ Silvia Rivara,¹ Annalida Bedini,² Gilberto Spadoni,² Fabrizio Vincenzi,³ Katia Varani,³ Mariarosaria Cammarota,⁴ Francesca Boscia,⁴ Marco Mor¹

¹ Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy ² Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, Italy ³ Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy ⁴ Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli, Via Pansini 5, 44121, Ferrara, Italy

- Fatty acid amide hydrolase (FAAH) is responsible for the inactivating hydrolysis of N-acylethanolamines, including the endocannabinoid anandamide (AEA), and the lipid modulators oleoylethanolamide (OEA) and palmitoylethanolamide (PEA).²
- Enhancing the endocannabinoid and melatonergic tone has therapeutic potential to treat neuroinflammatory diseases.
- UCM1341 is a dual-acting compound with FAAH inhibitory action and agonist activity on melatonin receptors.³
- Aim: to evaluate the protective effects of UCM1341 against neuroinflammation-induced degeneration.⁴

 K_{i} (MT₁) = 0.78 nM

 $K_{i}(MT_{2}) = 1.70 \text{ nM}$

2-iodomelatonin

 $pK_i(MT_1) = 10.71$

 $pK_i(MT_2) = 9.83$

Unbinding simulations of 2-iodomelatonin from MT₁ and MT₂ receptors

Top:

(χ1~180°,

conformation;

open conformation).

- Determination of ligand binding affinity to melatonin receptors relies on displacement binding assays with the radioligand 2-[¹²⁵I]iodomelatonin (2-[¹²⁵I]IMLT) which is characterized by slow dissociation rate.
- Aim: to evaluate the impact of the slow dissociation of 2-[¹²⁵I]IMLT on K_i values obtained for ligands in standard experimental conditions;

to provide a mechanistic explanation of the different dissociation half-life observed for 2-iodomelatonin.⁵

	k on (N	/I ⁻¹ min ⁻¹)	k _{off} (mir	¹⁻¹)		Dissociation t _{1/2} (min)	
MT ₁	$1.2 \pm 0.1 \times 10^8$		0.0028 ± 0.0002			248 ± 20	
MT ₂	$3.7 \pm 0.3 \times 10^7$		0.000639 ± 0.000054		54	1085 ± 98	
Receptor		Incubation time		K _D (pM)	B	Bmax (fmol mg ⁻¹ protein)	
MT ₁		2 h		26 ± 2	34	42 ± 26	
MT ₁		20 h		19 ± 2	329 ± 31		
MT ₂		2 h		78 ± 5	76	6 ± 7	
MT_2		20 h		65 ± 4	74	4 ± 6	

melatonin

 $pK_{i}(MT_{1}) = 9.65$

 $pK_{i}(MT_{2}) = 9.27$

UCM1341

Dissociation curves (A) of 2-[¹²⁵I]IMLT for MT₁ and MT₂ receptors. Association curves of 2-[¹²⁵I]IMLT for MT_1 (**B**) and MT_2 (**C**) receptors.

Left: potential of mean force (PMF) profiles calculated from umbrella sampling simulations for 2-iodomelatonin unbinding from the MT_1 (red) and MT_2 receptor (purple). Right: the unbinding pathway of 2-iodomelatonin at the MT_1 (A, orange) and MT_2 (B, purple) receptor is represented through the position of the center of mass of the ligand.

Results

Energy barriers consistent with the longer dissociation half-life at the

Results

- Incubation time affected only weakly the binding affinity constants.
- Structure-activity relationships are conserved when binding data are collected at shorter incubation times.

References

- 1. Liu J, Clough SJ, Hutchinson AJ, et al. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol. 2016;56:361-83.
- Maccarrone M, Di Marzo V, Gertsch J, et al. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev. 2023;75:885-958.

Restricted mobility of a gatekeeper tyrosine along a lipophilic path at the

3. Spadoni G, Bedini A, Furiassi L, et al. Identification of Bivalent Ligands with Melatonin Receptor Agonist and Fatty Acid Amide Hydrolase (FAAH) Inhibitory Activity That Exhibit Ocular Hypotensive Effect in the Rabbit. J Med Chem. 2018;61:7902-7916. 4. Cammarota M, Ferlenghi F, Vacondio F, et al. Combined targeting of fatty acid amide hydrolase and melatonin receptors promotes neuroprotection and stimulates inflammation resolution in rats. Br J Pharmacol. 2023;180:1316-1338. 5. Bedini A, Elisi GM,2 Fabiola Fanini F, et al. Binding and unbinding of potent melatonin receptor ligands: mechanistic simulations and experimental evidence. J Pineal Res. 2024, in press.